Henry M. M cH enry
D epartment of A nthropology, University of California, Davis, California 95616, U.S.A. E-mail: hmmchenry@ucdavis.edu

Lee R. Berger
D epartment of A natomical Sciences, U niversity of the Witwatersrand, 7 Y ork Rd, Parktown 2193 J ohannesburg, South A frica

Received 12 D ecember 1996
Revision received 12 August
1997 and accepted
27 September 1997
K eywords: A ustralopithecus, postcrania, Sterkfontein, H adar, human evolution, paleoanthropology, limb proportions, body weight.

Body proportions in Australopithecus afarensis and A. africanus and the origin of the genus Homo

N ew discoveries of A. africanus fossils from M ember 4 Sterkfontein reveal a body form quite unlike earlier Australopithecus species. The new adult material consists of over 48 fore- and hindlimb specimens and includes an associated partial skeleton, Stw 431. The forelimbs are relatively large: the average size of their joints corresponds to a modern human with body mass of 53 kg . The hindlimbs are much smaller with an average size matching a modern human of only 33 kg . Analyses of the Stw 431 partial skeleton confirm these results. In contrast, A. afarensis and anamensis more closely approximate a human pattern of forelimb to hindlimb joint size.
This is an unanticipated complication in our understanding of early human evolution. In general, craniodental morphology tracks time in species of Australopithecus: A. anamensis ($3 \cdot 5-4 \cdot 1 \mathrm{M}$ a) is the most primitive with a strongly sloping symphysis, large canine roots, etc., A. afarensis $(3 \cdot 0-3 \cdot 6 \mathrm{Ma})$ is less primitive, and A. africanus (2.63.0 M a) shares many derived characteristics with early H omo (e.g., expanded brain, reduced canine, bicuspid lower third premolar, reduced prognathism, greater flexion of the cranial base, deeper TMJ). The new postcranial material, however, reveals an apparently primitive morphology of relatively large forelimb and small hindlimb joints resembling more the pongid than the human pattern. M ore pongid-like proportions are also present in the two known associated partial skeletons of H. habilis (OH 62 and K NM-ER 3735). This may imply either (1) that A. africanus and H. habilis evolved craniodental characters in parallel with the lineage leading to later H omo, or (2) that fore to hindlimb proportions of A. afarensis (and perhaps A. anamensis) evolved independent of the lineage leading to Homo and does not imply a close phylogenetic link with H omo. Both of these explanations or any other phylogeny imply homoplasy.
(C) 1998 Academic Press

J ournal of H uman Evolution (1998) 35, 1-22
Article No. hu970197

Introduction

An unexpected result from the attempt to estimate the body weight of early hominids (M cH enry, 1992) is the discovery of differences in fore- to hindlimb proportions in A ustralopithecus africanus and Australopithecus afarensis. In that study using modern human standards, the size of the forelimb joints predicts an average weight for A. africanus of 51 kg , but the hindlimbs correspond to an average of only 34 kg . U sing all species of H ominoidea for comparison, the forelimb estimates average 42 kg and the hindlimb,

44 kg (M cH enry, 1992, T able 4). The proportions for A. afarensis are more human-like with an average weight using the modern human comparative sample of 42 kg from the forelimb and 38 kg from the hindlimb. The estimates based on all species of H ominoidea predict 28 kg from the forelimb and 49 kg from the hindlimb. Is it possible that A . africanus is more ape-like in its body proportions than the earlier and craniodentally more primitive A. afarensis?

The purpose of this paper is to examine this apparent twist in the evolutionary
history of our lineage. With available fossil evidence, is it true that A. africanus had more ape-like body proportions and A. afarensis had more human-like proportions? This is an interesting question because one might expect A. africanus to be more human-like. This expectation derives from the fact that it is later in time (M cK ee, 1993; M cK ee et al., 1995; W alter, 1993), shares a long list of derived craniodental traits with Homo relative to the primitive A. afarensis (M cH enry \& Skelton, 1985; Skelton \& M cH enry, 1992; Strait et al., 1997; K imbel, 1986; White et al., 1981), and has some postcranial synapomorphies with Homo as well (M cH enry, 1994a; Ricklan, 1987, 1990). This is not what would be expected from progressive evolution, but corresponds more with the model that sees the pattern of phylogeny marked by contingencies, homoplasy, historical particulars, and chance (G ould, 1995). It is also interesting because the two associated partial skeletons of H. habilis appear to have fore to hindlimb proportions more similar to those of A. africanus (H artwig-Scherer \& M artin, 1991; Leakey et al., 1989).

These subjects can be addressed now with more clarity because of the wealth of new discoveries from Sterkfontein. There are more than 48 adult fore- and hindlimb fossils from M ember 4 added to the sample since the last monograph on the subject (Robinson, 1972), including a partial skeleton thanks to the persistence and skill of P. V. Tobias, the late A. Hughes, R. J. Clarke, and the staff of the Sterkfontein project over the last three decades.

Materials and methods

We examine the limb proportions of A. africanus and A. afarensis by making direct comparisons of fore to hindlimb jointsizes in associated partial skeletons and by expanding on the analyses presented in M cH enry (1992). M cH enry (1992)
presents predicted body weights derived from regression formulae that related various measures of skeletal size with body weight in modern species of Hominoidea. T hat paper presents evidence for why the formulae based on the hindlimb joint size within H . sapiens appeared to be the most reasonable. This becomes particularly apparent from the partial skeletons of the early hominids.

M cH enry (1992) describes the comparative sample used here. It consists of 32 male and 23 female modern N orth American H. sapiens, six Khoisan H. sapiens, two Akaka Pygmy H. sapiens, six male and nine female Pan troglodytes, five male and seven female P. paniscus, eight male and four female Gorilla gorilla. All of these were examined and measured by one of us (H.M.M.) to eliminate possible errors introduced by interobserver differences. There are 16 measurements in this data set with 51 additional measures (of the scapula, carpals and metacarpals, tarsals and metatarsals) in seven specimens that serve as standards. These are an Akaka Pygmy skeleton reported in M cH enry (1992) with an estimated body weight of 28.4 kg , a K hoisan female with an estimated weight of 41.8 kg , and two N orth American females weighing 54.4 and 62.1 kg , two female chimps with wild-collected body weights of 42.2 kg and 50.0 kg and a male chimp of 60.0 kg .

T able 2 lists the fossil sample. It includes only those specimens whose adult status could be assured by the presence of an epiphysis. We follow the original describers of A. afarensis in attributing all of the Sidi H akoma and Denen Dora M ember hominids of the H adar F ormation to one species (Johanson et al., 1982) because of the strong case made for the unity of that hominid sample (K imbel et al., 1984; White, 1985; Kimbel et al., 1994). We also group all M ember 4 Sterkfontein hominid postcranial material into the single species, A. africanus. M ore than one species may be present
(K imbel \& Rak, 1993; Clarke, 1988), but, at present, there are no morphological reasons to separate the postcranial sample.
The variables are as follows:
(1) SCAPULA: The product of the anteriorposterior and inferosuperior diameters of the glenoid.
(2) HUMHEAD: The maximum anteroposterior diameter of the humeral head taken perpendicular to the shaft axis.
(3) ELBOW: T he product of the capitular height and articular width of the distal humerus. The capitular height is the distance from the anteroproximal border of the capitulum to the distoposterior border along the midline. The articular width is taken across the anterior aspect of the articular surface from the lateral border of the capitulum to the edge of the articular surface medially.
(4) HUMCAP: The product of the mediolateral and proximodistal diameters of the capitulum. The mediolateral diameter is the distance between the lateral border of the capitulum on the anterior aspect and the groove that separates the capitulum from the trochlea. The proximodistal diameter is the distance from the anteroproximal border of the capitulum to the distoposterior border along the midline.
(5) RADTV: The mediolateral diameter of the radial head.
(6) CAPITATE: The product of the proximodistal and palmodorsal diameters of the capitate. The proximodistal diameter is taken with one arm of the calipers flat on the distal articular surface and the other on the most distant point on the head. The palmodorsal diameter is taken with one arm of the calipers flat against the dorsal surface and the other to the most palmar point.
(7) MC1:The product of the mediolateral and palmodorsal diameters of the base of metacarpal 1 plus the product of the mediolateral and palmodorsal diameters of the head of metacarpal 1.
(8) MC1BASE: The product of the mediolateral and palmodorsal diameters of the base of metacarpal 1.
(9) MC2: The product of the mediolateral and palmodorsal diameters of the base of metacarpal 2 plus the product of the mediolateral and palmodorsal diameters of the head of metacarpal 2.
(10) M C2BASE: T he product of the mediolateral and palmodorsal diameters of the base of metacarpal 2.
(11) MC3: T he product of the mediolateral and palmodorsal diameters of the base of metacarpal 3 plus the product of the mediolateral and palmodorsal diameters of the head of metacarpal 3.
(12) MC3BASE: The product of the mediolateral and palmodorsal diameters of the base of metacarpal 3.
(13) MC4:T he product of the mediolateral and palmodorsal diameters of the base of metacarpal 4 plus the product of the mediolateral and palmodorsal diameters of the head of metacarpal 4.
(14) M C4BASE: T he product of the mediolateral and palmodorsal diameters of the base of metacarpal 4.
(15) MC4HEAD: The product of the mediolateral and palmodorsal diameters of the head of metacarpal 4.
(16) M C 5: T he product of the mediolateral and palmodorsal diameters of the base of metacarpal 5 plus the product of the mediolateral and palmodorsal diameters of the head of metacarpal 5.
(17) M C5BASE: The product of the mediolateral and palmodorsal diameters of the base of metacarpal 5 .
(18) MC5HEAD: The product of the mediolateral and palmodorsal diameters of the head of metacarpal 5 .
(19) SAC: The product of the anteroposterior and transverse diameters of the superior aspect of the sacral body.
(20) ACET: T he transverse diameter of the acetabulum taken between the inner walls of the rim, perpendicular to the line connecting the point where the axis of the ischium intersects the rim and the point where the anterolateral border of the ilium intersects the rim.
(21) FEMHEAD: The maximum superoinferior diameter of the femoral head.
(22) DISTFEM: The product of the biepicondylar and shaft anteroposterior diameters of the distal femur (measurements 12 and 13 of M cH enry \& C orruccini, 1978).
(23) PROXTIB:T he product of the anteroposterior and transverse diameters of the proximial tibia. The a-p diameter is taken with one arm of the calipers on the line connecting the posterior surfaces of the medial and lateral condyles and the other arm on the most distant point on the medial condyle. The transverse diameter is the distance between the most medial point on the medial condyle and the most lateral point on the lateral condyle, taken perpendicular to the a-p diameter.
(24) DISTTIB: The product of the anteroposterior and transverse diameters of the talar facet on the distal tibia. T he a-p diameter is the distance between the most anterior and posterior points of the talar facet projected on the a-p plane. The transverse diameter is the distance between the point where the midline of the talar facet intersects the fibular facet (laterally) and the lateral surface of the medial malleolus at the point of greatest curvature medially.
(25) TALUS: The mediolateral diameter of the tibial facet on the talus (measurement 5a of M cH enry, 1974).
(26) NAVICULAR: The product of the minimum distance from the midpoint
along the border between the facets for the cuboid and the lateral cuneiform to the rim of the talar facet, and the distance from the point of intersection of intermediate and lateral cuneiform facets with the dorsal surface to the most distant point on the tuberosity, plus the product of the maximum diameter of the talar facet taken perpendicular to the maximum diameter.
(27) M EDCU N : The product of the mediolateral breadth of the navicular facet taken perpendicular to its long axis and the dorsoplantar height of the navicular facet, plus the product of the mediolateral and dorsoplantar diameters of the M T 1 facet of the medial cuneiform.
(28) LATCUN: The product of the maximum dorsoplantar height of the lateral cuneiform with one arm of the caliper held parallel to the proximodistal axis flat on the dorsal surface and the other brought to the tuberosity, and the distance from the most dorsal point along the junction of the navicular and cuboid facets to the dorsolateral corner of the metatarsal III facet, plus the product of the maximum dorsoplantar height of the navicular facet and the maximum mediolateral diameter of the navicular facet of the lateral cuneiform.
(29) M T 1BASE: The product of the mediolateral and dorsoplantar diameters of the base of metatarsal 1.
(30) MT1HEAD: The product of the mediolateral and dorsoplantar diameters of the head of metatarsal 1.
(31) M T 2BASE: The product of the mediolateral and dorsoplantar diameters of the base of metatarsal 2.
(32) MT2HEAD: The product of the mediolateral and dorsoplantar diameters of the head of metatarsal 2.
T hree methods for comparing the fore- to hindlimb joint proportions appear in this study. First, the size of the forelimb joints
are compared directly with those of the hindlimb in associated skeletons. This method derived reduced major axis (RMA) formulae from log transformed measurements of the human and African ape samples. The method of RMA has the advantage over least squares (LS) and major axis (MA) because the slope is independent of the correlation coefficient and it gives the best estimate of the relationship between variables in cases where the error variance is not known (Aiello, 1992). The percent prediction errors (Smith, 1980, 1984; D agosto \& T erranova, 1992; Aiello \& W ood, 1994) of the fossil values from what is predicted from the human and African ape RMA formulae provide a measure of how different the foreto hindlimb proportions are in the fossils from the comparative samples. The A. afarensis partial skeleton, A.L. 288-1, preserves numerous fore- and hindlimb joints, but the two attributed to A. africanus, Sts 14 and Stw 431, are less complete. The former has no preserved forelimb elements. Stw 431 has a well preserved elbow joint but the hindlimb is represented by only a fragmentary pelvic girdle. Fortunately, the superior surface of the body of the sacrum is intact and enough of the acetabulum remains to allow reasonable reconstruction. The joints compared in this part of the analysis are, therefore, the lumbosacral, hip, and elbow. The elbow comparisons use the size of the distal articular surface of the humerus and the transverse diameter of the radial head. The method of comparing percent deviations from predictions based on RM A formulae is superior to comparing simple ratios, because the latter can be distorted by the nonlinearity of the two variables.

The second method makes use of the entire adult sample of limb elements by grouping them into approximate size categories. Table 2 presents this approach. Each fossil whose adult status can be assured by the preservation of an epiphysis is compared to the equivalent element in three modern
human skeletons that serve as standards. T hose fossils that range from slightly smaller than an Akaka Pygmy skeleton (with an estimated weight of 28 kg) to slightly smaller than a K hoisan skeleton (with an estimated weight of $45-50 \mathrm{~kg}$) are referred to the "small" category. T hose fossils that approximately match the size of the equivalent elements of this K hoisan skeleton are placed into the "medium" category. The "large" designation is for those fossils that are larger than the K hoisan standard and closer to that of a N orth American skeleton whose body weight at death was 54 kg . T he comparisons involved measurements and observations with the intention of grouping only approximately. T his approach had the advantage of using the entire adult sample attributed to A. afarensis and A. africanus. This method reveals the disproportionate number of small hindlimbs and large forelimbs in the A. africanus sample.

The third method involves prediction of body weight from joint size based on the relationship between skeletal size in modern human and ape specimens of known body weight. Within the superfamily Hominoidea, the span of body weights is large and there is a reasonably close relationship between various measures of skeletal size and body weight (Jungers, 1985), but modern humans are peculiar. The earliest and most complete partial skeleton of A ustralopithecus, A.L. 288-1, has fore- and hindlimb joints that are consistent with what is expected in a small-bodied modern human (M cH enry, 1992), although this specimen has short thighs (Jungers, 1982), and exceptionally small lower vertebral centra to the extent that its sacral body is much smaller than the tiniest modern human known (M cH enry, 1992). W hat we present here are predictions of body weight assuming human and ape proportions of fore- and hindlimb dimensions.

This third method extends that presented in M cHenry (1992). In that study, body

Figure 1. (a) Scatterplot and RM A of distal humeral size (ELBOW) vs. the size of the sacral centrum (SAC) in the human sample with Stw 431 (A. africanus) and A.L. 288-1 (A. afarensis). The RM A parameters and the percent prediction errors appear in Table 1. (b) Scatterplot and RM A of distal humeral size (ELBOW) vs. the size of the sacral centrum (SAC) in the African ape sample with Stw 431 (A. africanus) and A.L. 288-1 (A. afarensis). The RM A parameters and the percent prediction errors appear in T able 1.
weight is predicted from linear dimensions of skeletal size by three methods, least squares, reduced major axis, and major axis. Although the differences in assumptions among these methods are important, with high correlations, all of them produce similar results. That paper struck a compromise by averaging the estimates made by the three methods. In this study we employ reduced major axis. In practice, as long as the correlation coefficient is reasonably high (i.e. above 0.9) and the size of the fossils lies close to the range of the comparative sample, the three methods yield similar results (M cH enry, 1992).

Results

Figure 1 presents a plot relating dimensions of the distal humerus (ELBOW) and sacral body (SAC) in the human sample [Figure 1(a)] and African ape sample [Figure 1(b)] with the partial skeletons of A. afarensis (A.L. 288-1) and A. africanus (Stw 431) inserted. T able 1 gives the RMA formulae and percent prediction errors of the fossils. Both fossils fall above the human line, but the percent prediction error of A. africanus ($+94 \%$) is much greater than that of A. afarensis ($+23 \%$) and is well outside the observed range in modern humans (Table
Table 1 Regression formulae and percent prediction errors relating fore- and hindlimb measures and percent prediction errors of the A.L. 288-1 and Stw 431 partial skeletons*

M eas	Sample	r	S.E.	RMA slope	RMA int	$\begin{gathered} \text { PE† } \dagger \\ \text { A.L. } 288-1 \end{gathered}$	$\begin{aligned} & \text { PE } \dagger \\ & \text { Stw } 431 \end{aligned}$	PE \ddagger mean	$\begin{gathered} \text { PE } \\ \text { S.D.§ } \end{gathered}$	PE obsv. rangef
ELBOW vs. SAC	Human	0.770	0.063	1.1749	-0.7592	23\%	94\%	0.6\%	$14 \cdot 7$	-23 to 43
	Ape	0.901	0.081	1.4225	- 1.1474	- 39\%	- 7\%	0.8\%	$18 \cdot 5$	-36 to 35
RADTV vs SAC	Human	0.731	0.034	0.6076	-0.5835	14\%	56\%	0.3\%	$8 \cdot 4$	-19 to 18
	Ape	0.886	0.034	$0 \cdot 5619$	-0.2510	- 29\%	- 2\%	0.4\%	$7 \cdot 9$	-16 to 15
ELBOW vs. ACET	Human	0.841	0.047	2.5585	- 1.3924	59\%	58\%	0.5\%	$11 \cdot 2$	-25 to 29
	Ape	0.966	0.051	2. 1054	-0.3710	- 28\%	- 20\%	0.9\%	11.9	- 21 to 24
RADTV vs ACET	Human	0.817	0.026	1.3412	-0.9283	27\%	37\%	0.3\%	8.4	-19 to 18
	Ape	0.952	0.025	$0 \cdot 8750$	-0.0140	- 23\%	-8\%	0.3\%	$5 \cdot 8$	- 10 to 12

[^0]

Figure 2. (a) Scatterplot and RM A of diameter of the radial head (RADTV) vs. the size of the sacral centrum (SAC) in the human sample with Stw 431 (A. africanus) and A.L. 288-1 (A. afarensis). The RM A parameters and the percent prediction errors appear in Table 1. (b) Scatterplot and RMA of distal humeral size (ELBOW) vs. the size of the sacral centrum (SAC) in the A frican ape sample with Stw 431 (A. africanus) and A.L. 288-1 (A. afarensis). The RM A parameters and the percent prediction errors appear in Table 1.
1). In the plot of African apes [Figure 1(b)] A. africanus is close to the RM A line with a percent prediction error of -7%. A. afarensis is well below the African ape line (-39%) and is outside the observed range (T able 1). In this respect, therefore, A. afarensis is intermediate between modern humans and African apes, but A. africanus is like modern apes.

A similar result appears when the size of the radial head is plotted against the size of the sacral centrum [Figure 2(a) \& (b)]. A. africanus falls well above the human line (56%) and is far out of the observed range
in the human sample. A. afarensis is above the RM A but in the observed range of modern humans (14\%). In this comparison, the A . africanus partial skeleton is very similar to that seen in the African ape sample [-2% deviation, Figure 2(b)] and A. afarensis is well below the observed range (-29%).

Since the relative size of the sacral centra in all Plio-Pleistocene hominids is exceptionally small relative to limb joints when compared to modern humans, it is important to use other hindlimb joints to compare relative forelimb size. Figure 3(a) and (b) compare the transverse diameter of the

Figure 3. (a) Scatterplot and RMA of distal humeral size (ELBOW) vs. the transverse diameter of the acetabulum (ACET) in the human sample with Stw 431 (A. africanus) and A.L. 288-1 (A. afarensis). The RM A parameters and the percent prediction errors appear in T able 1. (b) Scatterplot and RM A of distal humeral size (ELBOW) vs. the transverse diameter of the acetabulum (ACET) in the African ape sample with Stw 431 (A. africanus) and A.L. 288-1 (A. afarensis). The RMA parameters and the percent prediction errors appear in T able 1.
acetabulum with the size of the distal humerus. Both A. afarensis and A. africanus fall above the human line (59 and 58% respectively) and out of the observed range in the human sample. They fall below the African ape axis (-28 and -20%). Figure 4(a) and (b) present the comparison of acetabular and radial head size in the human and African ape samples. A. afarensis is intermediate between human and ape in this respect (27% deviation above the human RMA and -23% deviation below the ape RMA). A. africanus, however, is more similar to the ape sample: Stw 431 is 37%
deviation above the human RM A and -8\% below the ape RMA.

T able 2 lists all of the adult limb fossils available for study in three general size categories. Both fore- and hindlimb specimens of A. afarensis are well represented in all three sizes, although there is a predominance of large hands from the A.L. 333 site and no small forelimb specimens from that site. There are some small forelimb specimens from A.L. 333 such as the two clavicles, A.L. 333-94 and A.L. 333X-6/9, but they may not be adult. T here is only one small forelimb specimen from M ember 4 of

Figure 4. (a) Scatterplot and RM A of diameter of the radial head (RADTV) vs. the transverse diameter of the acetabulum (ACET) in the human sample with Stw 431 (A . africanus) and A.L. 288-1 (A afarensis). The RM A parameters and the percent prediction errors appear in Table 1. (b) Scatterplot and RM A of diameter of the radial head (RADTV) vs. the transverse diameter of the acetabulum (ACET) in the African ape sample with Stw 431 (A. africanus) and A.L. 288-1 (A. afarensis). The RM A parameters and the percent prediction errors appear in T able 1.

Sterkfontein and that is the Stw 418 metacarpal I. It is possible that A. africanus had thumbs that were relatively smaller than those expected from the size of the other metacarpals by modern human standards. Almost all of the hindlimbs of A. africanus, by contrast, fall into the small category and none is large.

T able 3 presents the regression formulae, fossil measurements and predicted body weights. Figure 5(a) and (b) plot predicted body weights in A. africanus [5(a)] and A. afarensis [5(b)] using the human formulae, and Figure 6(a) and (b) use the formulae
based on the African ape sample. These estimates are not intended to be viewed as equally valid approximations of the true body weight. It is inappropriate to use these figures as well-considered estimates of species body-mass. Table 4 of McH enry (1992) is to be viewed in the same light. In both cases the intention is to explore what is reasonable in the light of all the available evidence. Obviously, to approach a valid estimate of body mass in a hominid specimen, hip, thigh, or ankle size is more likely to be closer to the real value than is, for example, wrist size and the estimates could
be improved by appropriate corrections as suggested by many (e.g., Aiello \& Wood, 1994; Dagosto \& Terranova, 1992; H artwig-Scherer, 1993; Smith, 1993a, b, 1994, 1996). The intention here is to compare estimates based on fore- and hindlimb size.

Figures 5 and 6 show how remarkably different the two fossil samples are. A. afarensis displays a pattern similar to that seen in the modern human sample [Figure 5(b)] and a highly skewed distribution when formulae based on the African ape samples are applied [Figure 6(b)]. A. africanus, on the other hand, has a skewed distribution when human-based formulae are applied [F igure 5(a)] but a more even distribution of fore- and hindlimb sizes when the African apes are used as standards [Figure 6(a)].

Given the fact that both fossil species are bipedal hominids it is remarkable that unlike the sample of A. afarensis, the material from Sterkfontein M ember 4 has no large hindlimbs to match its huge forelimbs. The A. afarensis sample includes many large hindlimb elements such as A.L. 333-3 and -w40 proximal femora, $-4,-61$, and $-w 56$ distal femora, $-42,-x 26$ and -7 distal tibiae, $-9 B$, -85 , and -9 A distal fibulae, -8 and -55 calcaneus, -36 and -47 naviculars, -28 medial cuneiform, -79 lateral cuneiform, and -72 and -115 metatarsals. One of the largest hindlimb specimens from M ember 4 of Sterkfontein is the Stw 99 femur, but this specimen may be associated with M ember 5. Its stratigraphic position lies close to the boundary between M embers 4 and 5 .

Discussion

The results from the analyses of the partial associated skeletons show that fore- to hindlimb joint proportions of A. afarensis, as represented by A.L. 288-1, are more similar to modern H. sapiens than are those of A. africanus (Stw 431). This confirms the results from the analyses of the larger
samples of the two species, but there is a complicating consideration. At small sizes like that of A.L. 288-1, limb-joint proportions of modern humans and African apes are more similar than at larger sizes like that of Stw 431 (H artwig-Scherer, 1993; M cH enry, 1992). U ntil the discovery of an associated partial skeleton of a large-bodied A. afarensis, uncertainty will lurk, but the A.L. 333 material probably contains foreand hindlimb parts of single individuals. The largest forelimb specimens such as the A.L. 333-107 and -87 proximal humeri, the A.L. 333-29 distal humeri, the A.L. 333-119 and 33X-5 proximal ulnae and the A.L. 333-12 distal ulna may well belong to the same individual as the large hindlimb pieces such as the A.L. 333-40 proximal femur, the A.L. 333-61 and 333W-56 distal femora, the A.L. 333-42 proximal tibia, the A.L. 333-7 distal tibia and the A.L. 333-9B distal fibula. Another large-bodied adult might be composed of the A.L. 333W-22 and -31 distal humeri and the A.L. 333-3/4 femora, the A.L. 333X-26 proximal tibia, the A.L. 333-9A and -85 distal fibulae, and the A.L. 333-8 and -55 cal canei. Whatever the exact association, the large forelimb fragments of A. afarensis have equival ently large hindlimbs so that proportions appear to be more humanlike than those of A. africanus. There are simply no large hindlimbs in the A. africanus collection to match the large forelimbs.

This study compares limb joint sizes and not limb lengths or shaft diameters. T here are as yet no limbs of A. africanus complete enough to reconstruct limb length with the same certainty as can be done for A.L. 288-1. Compared to modern humans, A.L. 288-1 has a short femur relative to the length of the humerus (Jungers, 1982). It cannot be said, therefore, that the overall limb proportions of A. afarensis are humanlike but only that the proportions of fore- to hindlimb joint sizes are similar to those of modern humans except for the unusually small lumbosacral joint. The proportions of

Table 2 Adult fore- and hindlimb specimens attributed to Australopithecus afarensis and A. africanus grouped according to approximate size*

	Small \dagger	M edium \ddagger	,
A. afarensis forelimb	A.L. 288-1 partial skeleton A.L. 137-48A and B humerus and ulna A.L. 322-1 humerus	A.L. 333W-36 ulna A.L. 333W-15 M C II A.L. 333W-42 M C II A.L. 333W-58 M C I	M AK -VP-1/3 humerus A.L. 333-29 humerus A.L. 333-31 humerus A.L. 333-87 humerus A.L. 333-107 humerus A.L. 333W-22 humerus A.L. 333-11 ulna A.L. 333-12 ulna A.L. 333-119 ulna A.L. 333X-5 ulna A.L. 438-1 ulna A.L. 333-130 radius A.L. 333-40 capitate A.L. 333-50 hamate A.L. 333-80 trapezium A.L. 333-91 pisiform A.L. 333-14 M C V A.L. 333-16 M C III A.L. 333-17 M C V A.L. 333-18 M V IV A.L. 333-56 M C IV A.L. 333-65 M C III A.L. 333-89 M C V A.L. 333-122 M C IV A.L. 333W-6 MC III A.L. 333-23 M C II A.L. 333W-26 M C V A.L. 333W-35 M C V A.L. 333W-39 M C I
A. afarensis hindlimb	A.L. 288-1 partial skeleton A.L. 128-1 femur A.L. 129-1 femur A.L. 129-1 femur A.L. 333-6 tibia A.L. 333-96 tibia A.L. 333-75 talus	A.L. 333W-56 femur A.L. 333-7 tibia A.L. 333-42 tibia A.L. 333-8 calcaneus A.L. 333-28 med. cuneiform A.L. 333-37 calcaneus A.L. 333-55 calcaneus A.L. 333-79 lat. cuneiform A.L. 333-13 M T V A.L. 333-21 M T I A.L. 333-54 M T I A.L. 333-78 M T V A.L. 333-115 partial foot	A.L. 211-1 femur A.L. 333-3 femur A.L. 333-4 femur A.L. 333-117 femur A.L. 333W-40 femur A.L. 333-123 femur A.L. 333-61 femur A.L. 333X-26 tibia A.L. 333-9A fibula A.L. 333-9B fibula A.L. 333-85 fibula A.L. 333W-37 fibula A.L. 333-36 navicular A.L. 333-47 navicular A.L. 333-72 M T II
A . africanus forelimb	Stw 418 M C I	Stw 328 humerus Stw 517 humerus Stw 46 radius Stw 380 ulna Stw 398 ulna Stw 399 ulna TM 1526 capitate Stw 64 M C III Stw 68 M C III Stw 330 M C IV Stw 552 M C IV	Stw 431 partial skeleton Sts 7 scapula an humerus Stw 162 scapula Stw 339 humerus Stw 516 radius Stw 26 M C IV Stw 63 MC V Stw 65 M C IV Stw 292 M C IV Stw 382 M C II Stw 394 M C IV

Table 2 (Continued)

	Small \dagger	M edium \ddagger	L arge§
A. africanus hindlimb	Sts 14 os coxa and femur Sts 34 femur TM 1513 femur Stw 25 femur Stw 318 femur Stw 392 femur Stw 403 femur Stw 501 femur Stw 522 femur Stw 527 femur Stw 358 tibia Stw 389 tibia Stw 396 tibia Stw 514 tibia Stw 515 tibia Stw 347 talus Stw 352 calcaneus Stw 486 talus Stw 238 M T I Stw 377 M T II Stw 387 M T III Stw 388 M T III Stw 477 M T III Stw 485 M T III Stw 496 M T III	Stw 431 partial skeleton Stw 99 femur Stw 435 M T II	

[^1]fore- to hindlimb shaft robusticity appear to be unhuman-like in A. afarensis as well. H artwig-Scherer (1993) shows that the midshaft circumference of A.L. 288-1 humerus corresponds to a modern human weighing 41 kg but that specimen's femur has a circumference matching a 34 kg human.

It may be that taphonomic processes produced the odd distribution of foreand hindlimbs found in M ember 4 of Sterkfontein and shown in Tables 2, 3 and Figures 5 and 6 . Perhaps a predator destroyed the large hindlimbs, but left the large forelimbs. That appears unlikely because both hands and feet are represented, and a predator would presumably not destroy small hands and large feet in a
selective manner. Nor does it seem likely that other taphonomic processes would result in only small hindlimbs being preserved in Sterkfontein M ember 4.

Although the key features associated with bipedality are present in all species of A ustralopithecus (M cH enry, 1994a; L atimer, 1988, 1991; Latimer \& Lovejoy, 1989, 1990a,b; Latimer et al., 1987; Lovejoy, 1988), the relatively large forelimb joints of A. africanus may imply greater arboreality in this species than in A. afarensis. Limb proportions were part of the evidence cited by Jungers (1982) to show that A. afarensis had more arboreal adaptations than modern people (Susman et al., 1984; Jungers \& Stern, 1983). The shoulder morphology of
Table 3 Regression formulae and weight predictions*

Bone	Sample	$\begin{aligned} & \text { LS } \\ & \text { slope } \end{aligned}$	$\begin{aligned} & \text { LS } \\ & \text { int } \end{aligned}$	r	S.E.	RM A slope	RM A int	Fossil	M eas	H.S. wt	Ape wt
Scapula	Human	1.5573	- 2.6763	0.914	0.074	1.7038	-3.0839	A.L. 288-11	$422 \cdot 4$	24.5	$23 \cdot 0$
	Ape	$1 \cdot 1867$	-1.7424	0.971	0.066	1-2221	- 1.8471	Sts 7	$690 \cdot 3$	$57 \cdot 7$	41.9
								Stw 162	$881 \cdot 5$	$85 \cdot 9$	56.5
H umhead	Human	1.8308	- 1.1930	0.944	0.057	1.9404	- 1.3642	A.L. 288-1r	$27 \cdot 3$	$26 \cdot 5$	$17 \cdot 9$
	Ape	1.8308	-1.1930	0.944	0.055	$2 \cdot 5558$	-2.4184	A.L. 333-107	$35 \cdot 1$	$43 \cdot 1$	34.0
								Sts 7	39.7	$54 \cdot 7$	$46 \cdot 5$
								Stw 328	$34 \cdot 2$	41.0	$31 \cdot 8$
								Stw 517	$35 \cdot 3$	$42 \cdot 8$	34.5
Elbow	Human	0.8635	-0.7788	0.943	0.057	0.9152	-0.9257	A.L. 137-48a	$525 \cdot 6$	$36 \cdot 7$	23.7
	Ape	1.2870	- $2 \cdot 1258$	0.995	0.027	1.2935	-2.1447	A.L. 288-1m	$420 \cdot 5$	29.9	$17 \cdot 7$
								A.L. 322-1	$526 \cdot 2$	$36 \cdot 7$	$23 \cdot 7$
								Stw 431	$769 \cdot 5$	52.0	38.8
Humcap	Human	1.8985	-3.0029		0.030	1.9235	-3.0635	A.L. 333-29	268.6	$40 \cdot 6$	$30 \cdot 7$
	Ape	1.4391	- 2.0000	0.969	0.067	1.4851	- 2.1201	A.L. $333 \mathrm{w-22}$	$316 \cdot 2$	$55 \cdot 6$	$39 \cdot 1$
Radtv	Human	1.9910	-0.8912	0.955	0.051	2.0859	-1.0132	A.L. 288-1p	$15 \cdot 0$	$27 \cdot 5$	$10 \cdot 7$
	Ape	$3 \cdot 3155$	- 2.8619	0.985	0.046	3.3660	- 2.9309	A.L. $333 \mathrm{x}-14$	$22 \cdot 2$	62.4	$39 \cdot 9$
								Stw 431	$22 \cdot 2$	$62 \cdot 4$	$39 \cdot 9$
								Stw 516	$22 \cdot 5$	$64 \cdot 2$	41.7
C apitate	Human	1.8792	-3.0159	0.999	0.009	1.8811	-3.0197	A.L. 288-1w	$203 \cdot 8$	$21 \cdot 2$	11.5
	Ape	1.6338	-2.6878	0.966	0.070	$1 \cdot 6913$	- 2.8442	A.L. 333-40	$357 \cdot 8$	$60 \cdot 8$	$29 \cdot 8$
								TM 1526	$294 \cdot 2$	$42 \cdot 1$	$21 \cdot 4$
MC1	Human Ape	1.3514	-1.6502	0.915	0.059	$\begin{aligned} & 1.4769 \\ & 2.4547 \end{aligned}$	$\begin{array}{r} -1.9563 \\ 4.0259 \end{array}$	A.L. 333 w- 39 Stw 418	$285 \cdot 1$	$46 \cdot 7$	$100 \cdot 1$
		1.9417		0.791	0.066				$230 \cdot 5$	$34 \cdot 1$	59.4
M C1 base	Human	1.7761	$\begin{aligned} & -2.8289 \\ & -2.2355 \end{aligned}$	0.973	0.0339	1.8254	- 2.3430	A.L. 333-58	144.8	$40 \cdot 0$	$64 \cdot 1$
		1.9829	- 2.4808	0.968	0.027	2.0485	- 2.6192				
M C2	Human	0.9885	-0.8098	0.990	0.021	0.9985	-0.8343	A.L. $333 \mathrm{w}-23$	$400 \cdot 9$	58.2	$55 \cdot 8$
	Ape	1.2782	-1.5833	0.952	0.033	1.3441	-1.7519	A.L. $333 \mathrm{w}-48$	$300 \cdot 6$	$43 \cdot 7$	$37 \cdot 9$
								Stw 382	$414 \cdot 7$	$60 \cdot 2$	$56 \cdot 5$
M C2 base	Human Ape	1.1315	-0.9083	0.976	0.032	1.1593	-0.9708	A.L. $333 \mathrm{w-15}$	169.2	41.0	$43 \cdot 3$
		1.0353	-0.6699	0.984	0.019	1.0522	-0.7084				
M C3	Human Ape	1.1968	- 1.2933	0.990	0.021	1.2089	- 1.3230	A.L. $333 \mathrm{w-16}$	$316 \cdot 7$	$50 \cdot 1$	$35 \cdot 2$
		0.8717	-0.6341	0.998	0.008	0.8734	-0.6381	Stw 64	$326 \cdot 3$	52.0	$36 \cdot 1$
								Stw 68	$336 \cdot 1$	53.9	$37 \cdot 0$
M C3 base	Human Ape	$\begin{aligned} & 1.3504 \\ & 1.2853 \end{aligned}$	$\begin{aligned} & -1.3325 \\ & -1.3103 \end{aligned}$	$\begin{aligned} & 0.999 \\ & 0.999 \end{aligned}$	$\begin{aligned} & 0.004 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 1 \cdot 3518 \\ & 1 \cdot 2366 \end{aligned}$	$\begin{aligned} & -1.3352 \\ & -1.3135 \end{aligned}$	$\begin{aligned} & \text { A.L. } 333 w-6 \\ & \text { A.L. } 333 w-65 \end{aligned}$	$200 \cdot 0$	$59 \cdot 6$	$44 \cdot 4$
									$180 \cdot 0$	$51 \cdot 7$	38.7

Table 3 (Continued)

Bone	Sample	$\begin{aligned} & \text { LS } \\ & \text { slope } \end{aligned}$	$\begin{aligned} & \text { LS } \\ & \text { int } \end{aligned}$	r	S.E.	RM A slope	RM A int	Fossil	M eas	H.S. wt	Ape wt
MC4	Human	0.7623	-0.1021	0.979	0.030	0.7787	-0. 1392	A.L. 333-56	$220 \cdot 4$	$48 \cdot 5$	$33 \cdot 9$
	Ape	0.7964	-0.3249	0.933	0.039	0.8536	-0.4697				
M C4 base	H uman	0.7353	-0.1820	0.962	0.040	0.7643	-0.1243	A.L. 333-122	118.6	$51 \cdot 2$	$45 \cdot 9$
	Ape	0.6755	0.2674	0.830	0.060	0.8139	-0.0260	Stw 65	$128 \cdot 1$	$54 \cdot 3$	$48 \cdot 9$
								Stw 330	116.6	28.5	$45 \cdot 3$
M C4 head	Human	0.7820	-0.0871	0.992	0.019	0.7883	-0.0744	A.L. 333-18	128.6	$54 \cdot 6$	$32 \cdot 1$
	Ape	0.8367	-0.2539	0.976	0.024	0.8573	-0.3016	Stw 26	$133 \cdot 3$	$56 \cdot 2$	$33 \cdot 1$
								Stw 292	$124 \cdot 3$	$53 \cdot 2$	$31 \cdot 2$
								Stw 394	175.9	69.9	42.0
								Stw 552	$115 \cdot 0$	$50 \cdot 0$	$29 \cdot 2$
MC5	Human	$0 \cdot 8665$	-0.2900	0.997	0.012	$0 \cdot 8691$	-0.2955	A.L. 333-14	$222 \cdot 6$	$55 \cdot 6$	$60 \cdot 8$
	Ape	2.5488	-4.1994	0.9511	0.033	$2 \cdot 6798$	-4.5028	A.L. 333-89	$175 \cdot 9$	$45 \cdot 3$	$32 \cdot 7$
M C5 base	Human	0.9143	-0.1371	0.975	0.03236	0.9377	- 0.1830	A.L. $333 \mathrm{w-26}$	$110 \cdot 0$	53.9	$233 \cdot 8$
	Ape	6.6727	- 11.2607	0.993	0.013	6.7197	- 11.3487	A.L. 333 w .35	107.9	$52 \cdot 9$	$205 \cdot 4$
								Stw 63	$110 \cdot 6$	$54 \cdot 1$	$242 \cdot 5$
M C5 head	Human	0.7878	-0.1371	0.999	0.00718	0.7886	-0.1354	A.L. 333-17	101.5	$52 \cdot 2$	37.8
	Ape	1.6607	- 1.7447	0.922	0.042	1.7992	- 2.0324	A.L. 333-27	116.6	58.2	48.5
Sac	Human	1.4991	- 2.9735	0.968	0.043	1.5492	-3.1290	A.L. 288-1an	636.4	16.4	31.5
	Ape	1.8765	-3.7409	0.921	$0 \cdot 106$	2.0375	-4.2140	Sts 14	461.7	$10 \cdot 0$	16.4
								Stw 431	721.6	19.9	$40 \cdot 7$
Femhead	Human	1.7125	- 1.0480	0.976	0.033	1.7538	- 1.1137	A.L. 288-1ap	$28 \cdot 6$	$27 \cdot 6$	$30 \cdot 4$
	Ape	2.8826	-2.7130	0.988	0.041	2.9176	-2.7660	A.L. 333-3	$40 \cdot 2$	$50 \cdot 1$	$82 \cdot 1$
								Sts 14	$30 \cdot 0$	$30 \cdot 0$	$35 \cdot 0$
								Stw 25	$32 \cdot 4$	$34 \cdot 3$	$43 \cdot 8$
								Stw 99	38.0	$45 \cdot 4$	$69 \cdot 7$
								Stw 311	$35 \cdot 7$	$40 \cdot 7$	$58 \cdot 1$
								Stw 392	$31 \cdot 5$	$32 \cdot 7$	$40 \cdot 3$
								Stw 431	$36 \cdot 0$	$41 \cdot 3$	$59 \cdot 5$
								Stw 501	$33 \cdot 2$	$35 \cdot 8$	$47 \cdot 0$
								Stw 522	$31 \cdot 1$	$31 \cdot 9$	38.8
								Stw 527	$32 \cdot 5$	34.5	$44 \cdot 2$
Distfem	Human	0.9600	- 1.5678	0.968	0.043	0.9921	- 1.6762	A.L. 129-1a	$140 \cdot 6$	28.0	36.1
	Ape	1.4479	-1.5495	0.984	0.049	1.4714	-1.6030	A.L. 333-4	208.2	$41 \cdot 3$	$64 \cdot 3$
								A.L. $333 \mathrm{w-56}$	$202 \cdot 6$	$40 \cdot 2$	$61 \cdot 8$
								TM 1513	$163 \cdot 6$	$32 \cdot 5$	$45 \cdot 1$
								Sts 34	193.3	$38 \cdot 4$	$57 \cdot 7$

Table 3 (Continued)

Bone	Sample	$\begin{aligned} & \text { LS } \\ & \text { slope } \end{aligned}$	$\begin{aligned} & \text { LS } \\ & \text { int } \end{aligned}$	r	S.E.	RMA slope	RMA int	Fossil	M eas	H.S. wt	Ape wt
Proxtib	Human Ape	$\begin{aligned} & 1.0583 \\ & 1.5066 \end{aligned}$	$\begin{aligned} & -1.9537 \\ & -3.3283 \end{aligned}$	$\begin{aligned} & 0.991 \\ & 0.993 \end{aligned}$	$\begin{aligned} & 0.023 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 1.0683 \\ & 1.5172 \end{aligned}$	$\begin{aligned} & -1.9880 \\ & -3.3648 \end{aligned}$	A.L. 129-1b	$1595 \cdot 6$	$27 \cdot 1$	$31 \cdot 2$
								A.L. 288-1aq	$1625 \cdot 2$	$27 \cdot 7$	$32 \cdot 1$
								A.L. $333 \mathrm{x}-26$	$2730 \cdot 3$	$48 \cdot 2$	$70 \cdot 6$
								A.L. 333-42	$2560 \cdot 0$	$45 \cdot 0$	64.0
								A.L. $333 \mathrm{w}-26$	$2730 \cdot 3$	48.2	$70 \cdot 6$
								Stw 514	$1776 \cdot 7$	$30 \cdot 4$	36.8
Dist tib	Human Ape	$\begin{aligned} & 0.9005 \\ & 1.6314 \end{aligned}$	$\begin{aligned} & -0.8790 \\ & -2.7021 \end{aligned}$	$\begin{aligned} & 0.974 \\ & 0.989 \end{aligned}$	0.0390.039	0.9246	-0.9473	A.L. 288-1ar	329.4	24.0	$25 \cdot 2$
						1.6495	-2.7518	A.L. 333-6	$470 \cdot 9$	$33 \cdot 4$	$45 \cdot 4$
								A.L. 333-7	$612 \cdot 5$	$42 \cdot 6$	$70 \cdot 1$
								A.L. 333-96	441.0	$31 \cdot 5$	$40 \cdot 8$
								Stw 358	318.5	$23 \cdot 3$	23.8
								Stw 389	$539 \cdot 7$	$37 \cdot 9$	56.9
								Stw 515	$376 \cdot 1$	$27 \cdot 2$	31.4
Talus	Human	1.7712	-0.7512	0.937	0.060	1-8903	-0.9148	A.L. 288-1as	$17 \cdot 3$	26.6	$44 \cdot 3$
	Ape	$3 \cdot 1699$	-2.2714	0.940	0.093	3.3722	- 2.5282	Stw 102	18.6	$30 \cdot 5$	56.6
								Stw 347	$17 \cdot 6$	$27 \cdot 5$	$47 \cdot 0$
								Stw 486	$19 \cdot 6$	$33 \cdot 7$	67.5
Navic	Human	$1 \cdot 1982$	-1.7338	$0 \cdot 9016$	0.0794	$1 \cdot 3289$	- $2 \cdot 1033$	A.L. 333-36	848.7	$61 \cdot 5$	$93 \cdot 9$
		1.7597	-3.1838	0.987	0.043	1.7829	-3.2490	$\begin{aligned} & \text { A.L. } 333-47 \\ & \text { A.L. } 333-28 \end{aligned}$		$56 \cdot 6$	84.0
M ed Cun	Human	1.0641	- 1.2228	0.9822	0.0345	1.0833	- 1.2741		$409 \cdot 3$	36.0	$39 \cdot 5$
		1.8670	-3.2782	0.992	0.034	1.8821	-3.3192				
Lat Cun	Human	1.5541	- 2.6113	0.9930	0.0217	1.5651	- 2.6419	A.L. 333-79	594.4	$50 \cdot 1$	$101 \cdot 1$
		1.5467	- 2.3008	0.934	0.097	1.6560	-2.5889				
MT1 base	Human Ape	1.0264	- 1.0315	0.993	0.0169	1.0336	- 1.0506	A.L. 333-54	408.9	$44 \cdot 6$	63.9
		1.2823	- 1.5433	0.986	0.018	1.3005	- 1.5893				
MT 1 head	Human Ape	0.86151	-0.4654	0.984	0.0264	0.8755	-0.4998	$\begin{aligned} & \text { A.L. } 333-21 \\ & \text { A.L. } 333-115 \text { A } \end{aligned}$	$262 \cdot 4$	41.5	$82 \cdot 1$
		1.7641	- 2.3887	0.834	0.060	$2 \cdot 1152$	- 3.2021		$302 \cdot 8$	$47 \cdot 0$	$111 \cdot 2$
M T 2 base	Human Ape	0.9781	-0.6264	0.967	0.0375	1.0115	-0.7036	Stw 238	$183 \cdot 6$	38.6	33.5
		1.5396	- 1.9594	0.994	0.012	1.5489	- 1.9817	Stw 377	$176 \cdot 9$	$37 \cdot 2$	$31 \cdot 7$
								Stw 435 A.L. 333-72 A.L. 333-115B	$\begin{aligned} & 235 \cdot 5 \\ & 142 \cdot 3 \\ & 134 \cdot 8 \end{aligned}$	$49 \cdot 6$	$49 \cdot 3$
MT 2 head	Human Ape	$\begin{aligned} & 1.9404 \\ & 1.2775 \end{aligned}$	$\begin{aligned} & -2.3545 \\ & -1.0305 \end{aligned}$	$\begin{aligned} & 0.997 \\ & 0.982 \end{aligned}$	$\begin{aligned} & 0.01125 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 1.9462 \\ & 1.3009 \end{aligned}$	$\begin{aligned} & -2.3673 \\ & -1.0805 \end{aligned}$			$\begin{aligned} & 66 \cdot 6 \\ & 59 \cdot 9 \end{aligned}$	$52 \cdot 6$49.0

*T hese weight estimates are not intended to be equally valid estimates of the actual body mass of the fossil hominids. They are intended to be used to compare
fore- and hindlimb joint sizes.

Figure 5. (a) Frequency distribution of predicted body weights in A. africanus using RM A formulae derived from the human sample. Light bars are forelimb elements; dark bars are hindlimbs. N ote that the forelimb elements predict mostly large weights and the hindlimb elements predict mostly small weights. (b) F requency distribution of predicted body weights in A. afarensis using RM A formulae derived from the human sample. N ote that unlike A. africanus, the distribution of large and small weights derived from foreand hindlimb elements is approximately equal.

Figure 6. (a) Frequency distribution of predicted body weights in A. africanus using RM A formulae derived from the A frican ape sample. Light bars are forelimb elements; dark bars are hindlimbs. U nlike the distribution derived from the human-based formulae, the number of small and large weights derived from fore- and hindlimbs are approximately equal in number. (b) Frequency distribution of predicted body weights in A. afarensis using RM A formulae derived from the African ape sample. Those weights derived from the forelimb are skewed towards the small end of the scale and those from the hindlimb yield larger than expected values.
A. africanus has many features usually associated with arboreality (Ciochon \& Corruccini, 1976; Vrba, 1979; Berger, 1994), but so does the shoulder of A. afarensis (Stern \& Susman, 1983; Susman et al., 1984; L arson, 1995). T he two species appear to be similar in wrist morphology (M cH enry, 1983). The hand morphology of A. africanus, however, appears to be less arboreally adapted than that of A. afarensis (Ricklan, 1987, 1990; M arzke et al., 1992). Hausler \& Schmid (1995) reconstruct the pelvis girdle of A. africanus to be slightly more primitive than that of A. afarensis, but the whole issue of pelvic reconstruction and its implications is highly controversial (Wood \& Quinney, 1996; H ausler \& Schmid, 1997). Berger \& Tobias (1996) describe a new A . africanus tibia, Stw 514, as ". . . being even more ape-like than those of A. afarensis" (p. 347). Clarke \& Tobias (1995) provide evidence that the foot of a M ember 2 Sterkfontein hominid that possibly belongs to A. africanus had a more abducted hallux than that of A. afarensis.

The apparent primitiveness of the A. africanus proportions contrasts with the craniodental evidence. Compared to A. afarensis, the skulls and teeth of A. africanus are less primitive in that they share numerous specializations with early species of H omo (Skelton \& McHenry, 1992; Strait et al., 1997; White et al., 1981; K imbel, 1986). Relative to A. afarensis, for example, A. africanus's canines are reduced, brains are expanded, muzzles are shortened, temporomandibular joints are deepened, lower third premolars are much more bicuspid, and mandibular symphyses are more vertical. These craniodental features imply that A. africanus is more closely related to early H omo than is A. afarensis. In fact, there is a remarkable sequence in craniodental morphology from primitive to derived that follows time. A rdipithecus ramidus (White et al., 1994, 1995) is the oldest and most primitive, A. anamensis is less primitive and is slightly later in time
(Leakey et al., 1995), A. afarensis is next followed by A. africanus, H. habilis/rudolfensis, H. erectus/ergaster, and H. sapiens. Specializations appear in many of these species, of course, so that the known sample does not necessarily represent the exact ancestordescendant relationships, but in each sample there is a remarkable accumulation of shared derived traits. It is a surprise, therefore, to find the postcranial proportions appearing through the same series in such an unexpected way. The published record of A. ramidus does not allow direct comparisons, but the next oldest species, A. anamensis, has a large hindlimb without an exceptionally large forelimb (L eakey et al., 1995). The tibia attributed to A. anamensis corresponds to a modern human weighing between 47 and 55 kg . The radius attributed to A . anamensis, KNM-ER 20419, has a head diameter matching a 61.2 kg human (H einrich et al., 1993) and the distal humerus, KNM-KP 271, corresponds to a 58.1 kg human (M cH enry, 1992). T hese specimens are not associated, however, but it is significant that unlike A. africanus, this species has a large hindlimb element. As shown here, the joint sizes of the forelimbs relative to the hindlimbs in A . afarensis are within the range of modern H. sapiens. But the later and less craniodentally primitive species, A. africanus, A. (Paranthropus) robustus (M cH enry, 1974, 1978), A (P.) boisei (M cH enry, 1978; Grausz et al., 1988; Walker et al., 1989) and H. habilis sensus stricto (Johanson et al., 1987; H artwig-Scherer \& M artin, 1991; Leakey et al., 1989), have more primitive fore- to hindlimb proportions. H owever one arranges the phylogeny, there must have been homoplasy. Homoplasy is common in the phylogeny of animals and plants (Sanderson, 1991; Sanderson \& Donoghue, 1989; Sanderson \& Hufford, 1996). It is also apparent in the craniodental evolution of Hominidae (M cH enry, 1994b). The pattern revealed by the new postcranial material from Sterkfontein reveals yet another example.

Summary

The fact that A. africanus was bipedal was established 50 years ago with the discovery of pelvic remains and its human-like gait has been particularly emphasized by many (e.g., Broom \& Robinson, 1947; Robinson, 1972; Lovejoy et al., 1973) but not by all (e.g., Zuckerman et al., 1973). Discoveries in the 1970s at Hadar and Laetoli showed that A. afarensis was also a committed biped (Johanson et al., 1982; L atimer, 1988, 1991; Latimer \& L ovejoy, 1989, 1990a, b; L atimer et al., 1987; Lovejoy, 1988; L eakey et al., 1976; T uttle et al., 1991; M cH enry, 1994a; and references therein), although not necessarily identical to modern humans (e.g. Stern and Susman, 1983; Susman et al., 1984; Susman and Stern, 1991; M cH enry, 1994a; and references therein). Before the new discoveries at Sterkfontein M ember 4, the comparison of the postcrania of the two species was limited to only a few elements and these showed that the two species were quite similar (M cH enry, 1986). The new fossils change that picture.

The new Sterkfontein M ember 4 postcranial material shows that by modern human standards, the forelimbs of A. africanus are larger than expected when compared to hindlimb joint-size. T his contrasts sharply with the more human-like fore- to hindlimb proportions seen in A. afarensis. In this respect, the earlier and craniodentally more primitive species, A. afarensis, is more human-like in its postcrania than is A. africanus. Since the two known associated partial skeletons of H . habilis appear to have the more primitive fore- to hindlimb proportions of A. africanus, the evolution of the human body form is more complicated than previously understood. Perhaps A. africanus and H . habilis evolved craniodental characters in parallel with the lineage leading to later Homo. On the other hand, perhaps the fore- to hindlimb proportions of A. afarensis (and possibly A . anamensis) evolved
independently of the lineage leading to Homo and does not imply a close phylogenetic link with Homo. Whatever the phylogeny, homoplasy is present.

Acknowledgements

We thank P. V. Tobias, C. K. Brain, F. T hackeray, R. E. Leakey, M. G. Leakey, Solomon Wordekal, Alemu Ademasu, Berhane Asfaw, T. D. White, D. C. Johanson, and F. C. H owell for permission to study the fossils in their charge; the curators of the comparative samples used in this study; S. Hartwig-Scherer, L. Aiello, K. E. Coffing and two anonymous reviewers for their helpful suggestions; J. H atch and A. Jones for invaluable assistance. Partial funding was provided by the Committee on Research, U. California, Davis, the Palaeo-anthropological Scientific Trust, and the University of the Witwatersrand, Johannesburg.

References

Aiello, L. C. (1992). Allometry and the analysis of size and shape in human evolution. J. hum. Evol. 22, 127-147.
Aiello, L. C. \& Wood, B. A. (1994). Cranial variables as predictors of hominine body mass. A m. J. phys. A nthrop. 95, 409-426.
Berger, L. R. (1994). Functional M orphology of the Hominoid Shoulder: Past and Present. Ph.D. D issertation, U niversity of the Witwatersrand.
Berger, L. R. \& Tobias, P. V. (1996). A chimpanzeelike tibia from Sterkfontein, South Africa and its implications for interpretations of bipedalism in A ustralopithecus africanus. J. hum. Evol. 30, 343-348.
Broom, R. \& Robinson, J. T. (1947). F urther remains of the Sterkfontein ape-man, Plesianthropus. N ature 160, 430-431.
Ciochon, R. L. \& C orruccini, R. S. (1976). Shoulder joint of Sterkfontein A ustralopithecus. S. A fr. J. Sci. 72, 80-82.
Clarke, R. J. (1988). A new A ustralopithecus cranium from Sterkfontein and its bearing on the ancestry of Paranthropus. In (F. E. Grine, Ed.) Evolutionary History of the "Robust" A ustralopithecines, pp. 285292. N ew Y ork: Aldine de Gruyter.

Clarke, R. J. \& Tobias, P. V. (1995). Sterkfontein M ember 2 foot bones of the oldest South African hominid. Science 269, 521-524.

D agosto, M . \& T erranova, C. J. (1992). Estimating the body size of Eocene primates: a comparison of results from dental and postcranial evidence. Int. J. Primatol. 13, 307-344.
Gould, S. J. (1995). A task for paleobiology at the threshold of majority. Paleobiology 21, 1-14.
Grausz, H. M., Leakey, R. E. F., Walker, A. C. \& Ward, C. V. (1988). Associated cranial and postcranial bones of Australopithecus boisei. In (F. E. Grine, Ed.) Evolutionary History of the "Robust" A ustralopithecines, pp. 127-132. N ew Y ork: Aldine de G ruyter.
H artwig-Scherer, S. (1993). Body weight prediction in early fossil hominids: towards a taxon"Independent" approach. Am. J. phys. A nthrop. 92, 7-36.
H artwig-Scherer, S. \& M artin, R. D. (1991). Was "Lucy" more human than her "child''? O bservations on early hominid postcranial skeletons. J. hum. Evol. 21, 439-449.
H ausler, M. \& Schmid, P. (1995). Comparison of the pelves of Sts 14 and AL 288-1: implications for birth and sexual dimorphism in australopithecines. J. hum. Evol. 29, 363-383.
H ausler, M. \& Schmid, P. (1997). Assessing the pelvis of AL 288-1: a reply to Wood and Quinney. J. hum. Evol. 32, 99-102.
Heinrich, R. E., Rose, M. D., Leakey, R. E. \& W alker, A. C. (1993). Hominid radius from the M iddle Pliocene of Lake Turkana, K enya. Am. J. phys. A nthrop. 92, 139-148.
Johanson, D. C., T aieb, M. \& Coppens, Y. (1982). Pliocene hominids from the Hadar Formation, Ethiopia (1973[EN-]1977): Stratigraphic, chronologic, and paleoenvironmental contexts, with notes on hominid morphology and systematics. Am. J. phys. A nthrop. 57, 373-402.
Johanson, D. C., M assao, F. T., Eck, G. G., White, T. D., Walter, R. C., K imbel, W. H., A sfaw, B., M anega, P., N dessokia, P. \& Suwa, G. (1987). N ew partial skeleton of H omo habilis from Olduvai G orge, T anzania. N ature 327, 205-209.
Jungers, W. L. (1982). Lucy's limbs: skeletal allometry and locomotion in A ustralopithecus afarensis. N ature 297, 676-678.
Jungers, W. L. (1985). Body size and scaling of limb proportions in primates. In (W. L. Jungers, Ed.) Size and Scaling in Primate Biology, pp. 345-382. New Y ork: Plenum Press.
Jungers, W. L. \& Stern, J. T. (1983). Body proportions, skeletal allometry and locomotion in the Hadar hominids: a reply to Wolpoff. J. hum. Evol. 12, 673-684.
Kimbel, W. H. (1986). Calvarial morphology of Australopithecus afarensis: a comparative phylogenetic study. Ph.D. Dissertation, K ent State U niversity.
K imbel, W. H., Johanson, D. C. \& Rak, Y. (1994). The first skull and other new discoveries of Australopithecus afarensis at Hadar, Ethiopia. Nature 368, 449-451.
K imbel, W. H. \& Rak, Y. (1993). The importance of species taxa in paleoanthropology and an argument
for the phylogenetic concept of the species category. In (W. H. Kimbel and L. B. M artin, Eds) Species, Species Concept, and Primate Evolution, pp. 461-483. N ew Y ork: Plenum Press.
K imbel, W. H., White, T. D. \& Johanson, D. C. (1984). Cranial morphology of Australopithecus afarensis: a comparative study based on a composite reconstruction of the adult skull. Am. J. phys. A nthrop. 64, 337-388.
L arson, S. G. (1995). N ew characters for the functional interpretation of primate scapulae and proximal humeri. Am. J. phys. A nthrop. 98, 13-35.
Latimer, B, M. (1988). Functional analysis of the Pliocene hominid ankle and pedal bones recovered from the Hadar Formation, Ethiopia: 19741977 collections. Ph.D. Dissertation, K ent State U niversity.
Latimer, B. M. (1991). Locomotor adaptations in A ustralopithecus afarensis: the issue of arboreality. In (Y. Coppens and B. Senut, Eds.) Origine(s) de la bipedie chez les hominides, pp. 169-176. Paris: C ahiers de Paleoanthropologie, CNRS.
Latimer, B. M. \& Lovejoy, C. O. (1989). The calcaneus of Australopithecus afarensis and its implications for the evoluton of bipedality. Am. J. phys. A nthrop. 78, 369-386.
Latimer, B. M. \& Lovejoy, C. O. (1990a). H allucial tarsometatarsal joint in A ustralopithecus afarensis. A m. J. phys. A nthrop. 82, 125-134.

Latimer, B. M. \& Lovejoy, C. O. (1990b). M etatarsophalangeal joints of Australopithecus afarensis. Am. J. phys. A nthrop. 83, 13-23.
Latimer, B. M., Ohman, J. C. \& Lovejoy, C. O. (1987). Talocrural joint in African hominoids: implication for A ustralopithecus afarensis. Am. J. phys. A nthrop. 74, 155-175.
Leakey, M. D., H ay, R. L., C urtis, G. H., Drake, R. E., Jackes, M. K. \& White, T. D. (1976). F ossil hominids from the L aetolil Beds. N ature 262, 460-466.
Leakey, M. G., Feibel, C. S., M cD ougall, I. \& W alker, A. (1995). New four-million-year-old hominid species from K anapoi and Allia Bay, K enya. N ature 376, 565-571.
Leakey, R. E. F., W alker, A., W ard, C. V. \& G rausz, H. M . (1989). A partial skeleton of a gracile hominid from the Upper Burgi M ember of the K oobi Fora Formation, East Lake Turkana, K enya. In (G. Giacobini, Ed.) H ominidae: Proceedings of the 2nd International Congress of Human Paleontology Turin, September 28-0 ctober 3, 1987, pp. 167-174, M ilan: Jaka.
Lovejoy, C. O. (1988). Evolution of human walking. Sci. Am. 259, 118-126.
Lovejoy, C. O., Heiple, K. G. \& Burstein, A. H. (1973). The gait of Australopithecus. Am. J. phys. Anthrop. 38, 757-780.
M arzke, M. W., Wullstein, K. L. \& Viegas, S. F. (1992). Evolution of the power ("squeeze") grip and its morphological correlates in hominids. A m. J. phys. A nthrop. 89, 283-298.
M cH enry, H. M . (1974). H ow large were the Australopithecines? A m. J. phys. A nthrop. 40, 329-340.

M cHenry, H. M. (1978). Fore- and hindlimb proportions in Plio-Pleistocene hominids. Am. J. phys. A nthrop. 49, 15-22.
M cHenry, H. M. (1983). The capitate of Australopithecus afarensis and A ustralopithecus africanus. Am. J. phys. A nthrop. 62, 187-198.
M cH enry, H. M . (1986). The first bipeds: a comparison of the Australopithecus afarensis and Australopithecus africanus postcranium and implications for the evolution of bipedalism. J. hum. Evol. 15, 177-191.
M cH enry, H. M. (1992). Body size and proportions in early hominids. Am. J. phys. A nthrop. 87, 407-431.
M cH enry, H. M. (1994a). Early hominid postcrania: Phylogeny and function. In (R. S. Corruccini and R. L. C iochon, Eds.) Integrative Pathways to the Past: Paleoanthropological Papers in Honor of F. Clark H owell, pp. 251-268. Ingelwood Cliffs, N ew Jersey: Prentice-H all.
M cH enry, H. M . (1994b). Tempo and mode in human evolution. Proc. N atl A cad. Sci., U.S.A. 91, 67806786.

M cH enry, H. M. \& Corruccini, R. S. (1978). The femur in early human evolution. Am. J. phys. A nthrop. 49, 473-488.
M cH enry, H. M . \& Skelton, R. L. (1985). Is A ustralopithecus africanus ancestral to Homo? In (P. V. T obias, Ed.) Hominid Evolution: Past, Present, and Future, pp. 221-226. N ew Y ork: Alan R. Liss.
M CK ee, J. K. (1993). Faunal dating of the Taung hominid fossil deposit. J. hum. Evol. 25, 363-376.
M cK ee, J. K., T hackerary, J. F. \& Berger, L. R. (1995). Faunal assemblage seriation of Southern African Pliocene and Pleistocene fossil deposits. Am. J. phys. A nthrop. 96, 235-250.
Ricklan, D. E. (1987). Functional anatomy of the hand of A ustralopithecus africanus. J. hum. Evol. 16, 643664.

Ricklan, D. E. (1990). The precision grip in Australopithecus africanus: Anatomical and behavioral correlates. In (G. H. Sperber, Ed.) From A pes to A ngels: Essays in H onor of Phillip V. Tobias, pp. 171-183. N ew York: Wiley-Liss.
Robinson, J. T. (1972). Early Hominid Posture and L ocomotion. Chicago: U niversity of Chicago Press.
Sanderson, M. J. (1991). In search of homoplastic tendencies: statistical inference of topological patterns in homoplasy. Evolution 45, 351-358.
Sanderson, M. J. \& D onoghue, M. J. (1989). Patterns of variation in levels of homoplasy. Evolution 43, 1781-1795.
Sanderson, M. J. \& H ufford, L. (1996). H omoplasy: The Recurrence of Similarity in Evolution. San Diego: Academic Press.
Skelton, R. R. \& M cH enry, H. M . (1992). Evolutionary relationships among early hominids. J. hum. Evol. 23, 309-349.
Smith, R. J. (1980). Rethinking allometry. J. Theor. Biol. 87, 97-111.
Smith, R. J. (1984). D etermination of relative size. The "criterion of subtraction" problem in allometry. J. Theor. Biol. 108, 131-142.

Smith, R. J. (1993a). Logarithmic transformation bias in allometry. Am. J. phys. A nthrop. 90, 215-228.
Smith, R. J. (1993b). Bias in equations used to estimate fossil primate body mass. J. hum. Evol. 25, 31-41.
Smith, R. J. (1994). Regression models for prediction equations. J. hum. Evol. 26, 239-244.
Smith, R. J. (1996). Biology and body size in human evolution: Statistical inference misapplied. Curr. A nthrop. 37, 451-460.
Stern, J. T. \& Susman, R. L. (1983). The locomotor anatomy of Australopithecus afarensis. Am. J. phys. A nthrop. 60, 279-318.
Strait, D. S., Grine, F. E. \& M oniz, M . A. (1997). A reappraisal of early hominid phylogeny. J. hum. Evol. 32, 17-82.
Susman, R. L. \& Stern, J. T. (1991). Locomotor behavior of early hominids: epistemology and fossil evidence. In (Y. Coppens and B. Senut, Eds) Origine(s) de la bipedie chez les hominides, pp. 121132. Paris: Cahiers de Paleoanthropologie, CNRS.

Susman, R. L., Stern, J. T. \& Jungers, W. L. (1984). Arboreality and bipedality in the Hadar hominids. Folia Primat. 43, 113-156.
Tuttle, R. H., Webb, D. M. \& Tuttle, N. I. (1991). L aetoli footprint trails and the evolution of hominid bipedalism. In (Y. Coppens and B. Senut, Eds), Origine(s) de la bipedie chez les hominides, pp. 187198. Paris: C ahiers de Paleoanthropologie, CN RS.

Vrba, E. S. (1979). A new study of the scapula of A ustralopithecus africanus from Sterkfontein. Am. J. phys. A nthrop. 51, 117-129.
Walker, A., Ward, C. V., Leakey, R. E. F. \& Grausz, H. M . (1989). Evolution in the A ustralopithecus boisei lineage. In (G. Giacobini, Ed.) Hominidae: Proceedings of the 2nd International Congress of Human Paleontology Turin, September 28-O ctober 3, 1987, pp. 133-140. M ilan: Jaka.
Walter, R. C . (1993). Age of Lucy and the first family: Single-crystal 40Ar/39Ar dating of the Denen D ora and lower Kada Hadar members of the Hadar Formation, Ethiopia. Geology 22, 6-10.
White, T. D. (1985). The hominids of H adar and L aetoli: an element-by-element comparison of the dental samples. In (E. Delson, Ed.) Ancestors: The Hard Evidence, pp. 138-152. N ew Y ork: Alan R. Liss.
White, T. D., Johanson, D. C. \& Kimbel, W. H. (1981). A ustralopithecus africanus: its phylogenetic position reconsidered. S. A fr. J. Sci. 77, 445-470.
White, T. D., Suwa, G \& Asfaw, B. (1994). A ustralopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. N ature 371, 306-312.
White, T. D., Suwa, G . \& A sfaw, B. (1995). C orrigendum: A ustralopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. N ature 375, 88.
Wood, B. A. \& Quinney, P. S. (1996). Assessing the pelvis of AL 288-1. J. hum. Evol. 31, 563-568.
Zuckerman, S. S., Ashton, E. H., Flinn, R. M. \& Oxnard, C. E. (1973). Some locomotor features of the pelvic girdle in primates. Symp. Zoo. Soc. Lond. 33, 71-165.

[^0]: *Figures 1-4 are scatterplots of these data around the reduced major axis.
 \dagger †PE refers to the percentage prediction error which is the observed value minus the predicted value divided by the predicted value times 100 (Smith, 1980 , 1984).
 $\ddagger P E$ mean is the average percentage prediction error for the comparative sample (Dagosto \& T erranova, 1992; Smith, 1980, 1984). SPE S.D. is the standard deviation of the prediction errors in the comparative sample.
 IPE obsv. range gives the maximum prediction error in the comparative sample.

[^1]: *Includes only specimens whose adult status can be confirmed by the presence of a fused epiphysis.
 \dagger Range is size from slightly smaller than an Akaka Pygmy skeleton (with estimated weight of 28 kg) to slightly smaller than a female K hoisan skeleton (with an estimated weight of $45-50 \mathrm{~kg}$).
 \ddagger Approximately equal in size to a female K hoisan skeleton (with an estimated weight of $45-50 \mathrm{~kg}$).
 §L arger than the female K hoisan skeleton ($45-50 \mathrm{~kg}$) and closer to a 54 kg N orth African skeleton.

